What are the best mining GPUs, and is it worth getting into the whole cryptocurrency craze? Bitcoin and Ethereum mining are making headlines again; prices and mining profitability are way up compared to the last couple of years. Everyone who didn’t start mining last time is kicking themselves for their lack of foresight. Not surprisingly, the best graphics cards and those chips at the top of our GPU benchmarks hierarchy end up being very good options for mining as well. How good? That’s what we’re here to discuss, as we’ve got hard numbers on hashing performance, prices, power, and more.
We’re not here to encourage people to start mining, and we’re definitely not suggesting you should mortgage your house or take out a big loan to try and become the next big mining sensation. Mostly, we’re looking at the hard data based on current market conditions. Predicting where cryptocurrencies will go next is even more difficult than predicting the weather, politics, or the next big meme. Chances are, if you don’t already have the hardware required to get started on mining today (or really, about two months ago), you’re already late and won’t see the big gains that others are talking about. Like the old gold rush, the ones most likely to strike it rich are those selling equipment to the miners rather than the miners themselves.
If you’ve looked for a new (or used) graphics card lately, the current going prices probably caused at least a raised eyebrow, maybe even two or three! We’ve heard from people who have said, in effect, “I figured with the Ampere and RDNA2 launches, it was finally time to retire my old GTX 1070/1080 or RX Vega 56/64. Then I looked at prices and realized my old card is selling for as much as I paid over three years ago!” They’re not wrong. Pascal and Vega cards from three or four years ago are currently selling at close to their original launch prices — sometimes more. If you’ve got an old graphics card sitting around, you might even consider selling it yourself (though finding a replacement could prove difficult).
Ultimately, we know many gamers and PC enthusiasts are upset at the lack of availability for graphics cards (and Zen 3 CPUs), but we cover all aspects of PC hardware — not just gaming. We’ve looked at GPU mining many times over the years, including back in 2011, 2014, and 2017. Those are all times when the price of Bitcoin shot up, driving interest and demand. 2021 is just the latest in the crypto coin mining cycle. About the only prediction we’re willing to make is that prices on Bitcoin and Ethereum will change in the months and years ahead — sometimes up, and sometimes down. And just like we’ve seen so many times before, the impact on graphics card pricing and availability will continue to exist. You should also be aware that, based on past personal experience that some of us have running consumer graphics cards 24/7, it is absolutely possible to burn out the fans, VRMs, or other elements on your card. Proceed at your own risk.
The Best Mining GPUs Benchmarked, Tested and Ranked
With that preamble out of the way, let’s get to the main point: What are the best mining GPUs? This is somewhat on a theoretical level, as you can’t actually buy the cards at retail for the most part, but we have a solution for that as well. We’re going to use eBay pricing — on sold listings — and take the data from the past seven days (for prices). We’ll also provide some charts showing pricing information from the past three months (90 days) from eBay, where most GPUs show a clear upward trend. How much can you make by mining Ethereum with a graphics card, and how long will it take to recover the cost of the card using the currently inflated eBay prices? Let’s take a look.
For this chart, we’ve used the current difficulty and price of Ethereum — because nothing else is coming close to GPU Ethereum for mining profitability right now. We’ve tested all of these GPUs on our standard test PC, which uses a Core i9-9900K, MSI MEG Z390 ACE motherboard, 2x16GB Corsair DDR4-3600 RAM, a 2TB XPG M.2 SSD, and a SeaSonic 850W 80 Plus Platinum certified PSU.
We’ve tuned Ethereum mining performance using either NBminer or PhoenixMiner, depending on the GPU, with an eye toward minimizing power consumption while maximizing hash rates. Also note that we’re using real-world in-line power measurements for the GPUs, collected using our Powenetics hardware and software solution, so our power figures are not relying on software data, which can be off by anywhere from a few watts to over 50W, depending on the GPU.
Finally, we’ve used $0.10 per kWh for power costs, which is much lower than some areas of the world but also higher than others. Taking the hash rate and current difficulty, we subtract the power cost to come up with daily profits. Then we used the approximate eBay price divided by the current daily profits to come up with a time to repay the cost of the graphics card. The following table is sorted by time to break even (assuming price and difficulty don’t change, which they absolutely will).
It’s rather surprising to see older GPUs at the very top of the list, but that’s largely based on the current going prices. GTX 1060 6GB and RX 590 can both hit modest hash rates, and they’re the two least expensive GPUs in the list. Power use isn’t bad either, meaning it’s feasible to potentially run six GPUs off a single PC — though then you’d need PCIe riser cards and other extras that would add to the total cost.
Note that the power figures for all GPUs are before taking PSU efficiency into account. That means actual power use (not counting the CPU, motherboard, and other PC components) will be higher. For the RTX 3080 as an example, total wall outlet power for a single GPU on our test PC is about 60W more than what we’ve listed in the chart. If you’re running multiple GPUs off a single PC, total waste power would be somewhat lower, though it really doesn’t impact things that much. (If you take the worst-case scenario and add 60W to every GPU, the time to break even only increases by 4-5 days.)
It’s also fair to say that our test results are not representative of all graphics cards of a particular model. RTX 3090 and RTX 3080 can run high GDDR6X temperatures without some tweaking, but if you do make the effort, the 3090 can potentially do 120-125MH/s. That would still only put the 3090 at third from the bottom in terms of time to break even, but it’s quite good in terms of power efficiency, and it’s the fastest GPU around. There’s certainly something to be said for mining with fewer higher efficiency GPUs if you can acquire them.
Here’s the real problem: None of the above table has any way of predicting the price of Ethereum or the mining difficulty. Guessing at the price is like guessing at the value of any other commodity: It may go up or down, and Ethereum, Bitcoin, and other cryptocurrencies are generally more volatile than even the most volatile of stocks. On the other hand, mining difficulty tends to increase over time and rarely goes down, as the rate of increased difficulty is directly tied to how many people (PCs, GPUs, ASICs, etc.) are mining.
So, the above is really a best-case scenario for when you’d break even on the cost of a GPU. Actually, that’s not true. The best-case scenario is that the price of Ethereum doubles or triples or whatever, and then everyone holding Ethereum makes a bunch of money. Until people start to cash out and the price drops, triggering panic sells and a plummeting price. That happened in 2018 with Ethereum, and it’s happened at least three times during the history of Bitcoin. Like we said: Volatile. But here we are at record highs, so everyone is happy and nothing could possibly ever go wrong this time. Until it does.
Still, there are obviously plenty of people who believe in the potential of Ethereum, Bitcoin, and blockchain technologies. Even at today’s inflated GPU prices, which are often double the MSRPs for the latest cards, and higher than MSRP for just about everything, the worst cards on the chart (RTX 3090 and RX 6900 XT) would still theoretically pay for themselves in less than seven months. And even if the value of the coins drops, you still have the hardware that’s at least worth something (provided the card doesn’t prematurely die due to heavy mining use). Which means, despite the overall rankings (in terms of time to break even), you’re generally better off buying newer hardware if possible.
Top Picks for the Best Mining GPUs
Here’s a look at what has happened with GPU pricing during the past 90 days, using tweaked code from Michael Driscoll. We’ve filtered out the ‘fake’ postings as much as possible, but really we’re mostly interested in the overall pricing trends. As you can see, the trend is up on every single GPU (out of the 30 we’ve looked at) during the past 90 days, with some models roughly doubling in price. Even budget GPUs are impacted, as they’re still profitable.
Given the above pricing and profitability, there’s a balance between time to break even and daily potential profits. We’ve considered the options and come up with this list of the best mining GPUs for Ethereum (right now — things could change rapidly based on pricing and availability).
GeForce RTX 3060 Ti: The newest and least expensive of the Ampere GPUs, it’s just as fast as the RTX 3070 and sometimes costs less. After tuning, it’s also the most efficient GPU for Ethereum right now, using under 120W while breaking 60MH/s.
Radeon RX 5700: AMD’s previous generation Navi GPUs are very good at mining, and can break 50MH/s while using about 135W of power. The vanilla 5700 is as fast as the 5700 XT and costs less, making it a great overall choice.
GeForce RTX 2060 Super: Ethereum mining needs a lot of memory bandwidth, and all of the RTX 20-series GPUs with 8GB end up at around 44MH/s and 130W of power, meaning you should buy whichever is cheapest. That’s usually the RTX 2060 Super.
Radeon RX 580 8GB: All the Polaris GPUs with 8GB of GDDR5 memory (including the RX 590, RX 580 8GB, RX 570 8GB, RX 480 8GB, and RX 470 8GB) end up with relatively similar performance, depending on how well your card’s memory overclocks. The RX 590 is currently the cheapest (theoretically), but it’s in limited supply, and all of the Polaris 10/20 GPUs remain viable. Just don’t get the 4GB models!
GeForce GTX 1660 Super: Mining performance is similar to the RX 580 8GB (30MH/s), but power is only 75W in our testing after tuning. The price is higher, however, so it’s not a complete win.
Radeon RX Vega 56: Overall performance is good, and some cards can perform much better — our reference models used for testing are more of a worst-case choice for most of the GPUs. After tuning, some Vega 56 cards might even hit 45-50MH/s, which would put this at the top of the chart.
Radeon RX 6800: Big Navi is potent when it comes to hashing, and all of the cards we’ve tested hit similar hash rates of around 65MH/s and 170W power use. The RX 6800 is generally several hundred dollars cheaper than the others and used a bit less power, making it the clear winner. Plus, when you’re not mining, it’s a very capable gaming GPU.
GeForce RTX 3080: This is the second-fastest graphics card right now, for mining and gaming purposes. The time to break even is only slightly worse than the other GPUs, after which profitability ends up being better overall. And if you ever decide to stop mining, this is the best graphics card for gaming — especially if it paid for itself! At around 95MH/s, it will also earn money faster after you recover the cost of the hardware (if you break even, of course).
What About Ethereum ASICs?
One final topic worth discussing is ASIC mining. Bitcoin (SHA256), Litecoin (Scrypt), and many other popular cryptocurrencies have reached the point where companies have put in the time and effort to create dedicated ASICs — Application Specific Integrated Circuits. Just like GPUs were originally ASICs designed for graphics workloads, ASICs designed for mining are generally only good at one specific thing. Bitcoin ASICs do SHA256 hashing really, really fast (some can do around 25TH/s while using 1000W — that’s trillions of hashes per second), Litecoin ASICs do Scrypt hashing fast, and there are X11, Equihash, and even Ethereum ASICs.
The interesting thing with hashing is that many crypto coins and hashing algorithms have been created over the years, some specifically designed to thwart ASIC mining. Usually, that means creating an algorithm that requires more memory, and Ethereum falls into that category. Still, it’s possible to optimize hardware to hash faster while using less power than a GPU. Some of the fastest Ethereum ASICs (e.g. Innosilicon A10 Pro) can reportedly do around 500MH/s while using only 1000W. That’s about ten times more efficient than the best GPUs. Naturally, the cost of such ASICs is prohibitively expensive, and every big miner and their dog wants a bunch of them. They’re all sold out, in other words, just like GPUs.
Ethereum has actually tried to deemphasize mining, but obviously that didn’t quite work out. Ethereum 2.0 was supposed to put an end to proof of work hashing, transitioning to a proof of stake model. We won’t get into the complexities of the situation, other than to note that Ethereum mining very much remains a hot item, and there are other non-Ethereum coins that use the same hashing algorithm (though none are as popular / profitable as ETH). Eventually, the biggest cryptocurrencies inevitably end up being supported by ASICs rather than GPUs — or CPUs or FPGAs. But we’re not at that point for Ethereum yet.
MORE: Best Graphics Cards
MORE: GPU Benchmarks and Hierarchy
MORE: All Graphics Content